Neighborhood evaluation of vehicular ad-hoc network using IEEE 802.11p

Lothar Stibor, Yunpeng Zang, ComNets RWTH-Aachen University, lsr|zyp@comnets.rwth-aachen.de
Hans-Jürgen Reumerman, Philips Research Aachen, hans-j.reumerman@philips.com

Abstract—Current research for vehicular communication is largely driven by the allocation of 75MHz spectrum in the 5.9GHz band for Dedicated Short Range Communications (DSRC) in North America. The IEEE 802.11p Physical (PHY) layer and Medium Access Control (MAC) layer that is currently under standardization aim at communication distances of up to 1000m. To achieve longer distances, multi-hop communication is needed. The number of neighbor vehicles is an important input parameter for algorithms that choose the optimal next transmitter of a multi-hop chain. In this paper we evaluate the number of potential communication partners in communication range of an IEEE 802.11p vehicular ad-hoc network including mobility effects and multi-path propagation. In addition the available communication duration is evaluated.

Index Terms—DSRC, IEEE 802.11p, VANET

I. INTRODUCTION

Research on vehicular communication got a major boost from the Federal Communications Commission (FCC) allocating 75 MHz spectrum at 5.9 GHz for Intelligent Transport System (ITS) applications in the US in October 1999.

Medium Access Control (MAC) protocols for vehicular communication are developed to support the most demanded applications like danger warning and toll collection. To enable these applications, the achievable communication range is a critical parameter. It decides the duration, a vehicle may communicate with a road side unit (RSU) or another vehicle. Moreover it is the critical measure for safety relevant communication as more distance translates into additional reaction time for the driver.

The wireless local area network (WLAN) based approach currently standardized by the IEEE 802.11p task group aims at communication distances of up to 1000m. To achieve larger distances, multi-hop communication is needed. Multi-hop communication requires algorithms that select the next transmitter in a multi-hop chain. Important input parameters for such algorithms are the number of potential communication partners and the stability of the neighborhood constellation.

Simple link budget calculations neglect the effects of the vehicular environment evolving from the multi path propagation and mobility effects.

Within the context of the WILLWARN (Wireless Lo-cal Danger Warning) application of the European Research project PREVENT [10], we evaluate the number of neighbors in a vehicular ad-hoc network as well as the upper boundary for the communication duration, using event-driven, stochastic simulation. Beside the IEEE 802.11p PHY and MAC, a two-ray channel model takes the special conditions of multi-path propagation into account. A mobility model emulates the realistic behavior of vehicles in the scenario.

II. IEEE 802.11p

The FCC petition for 5.9 GHz was launched in 1999 and the standardization work started in the ASTM group E17.51 based on IEEE 802.11a. In year 2002, the ASTM E2213-02 standard was approved and accepted as the basis for 5.9 GHz American Intelligent transport systems) ITS. The standard was reissued as ASTM 2213-03 in September 2003. The further standardization was transferred to the IEEE 802.11 working group. In September 2003 the study group (SG) for Wireless Access in Vehicular Environment (WAVE) met for the first time. In September 2004 the Project authorization request (PAR) was approved and the WAVE SG became Task Group (TG) “p”. The TG completed the initial draft 1.0 in February 2006. The actual version 1.4 of the draft will be balloted on in November 2006. This paper refers to the information in this actual draft IEEE 802.11p-D1.4.

A. Physical layer

The PHY used for the simulation is the IEEE 802.11p OFDM PHY. It is a variation of the OFDM based IEEE 802.11a standard. The IEEE 802.11a PHY employs 64-subcarrier OFDM. 52 out of the 64 sub-carriers are used for actual transmission consisting of 48 data sub-carriers and 4 pilot sub-carriers. The pilot signals are used for tracing the frequency offset and phase noise. The short training symbols and long training symbols, which are located in the preamble at the beginning of every PHY data packet, are used for signal detection, coarse frequency offset estimation, time synchronization, and channel estimation. A guard time GI, is attached to each data OFDM symbol in order to eliminate the Inter Symbol Interference introduced by the multi-path propagation. In order to combat the fading channel,
information bits are coded and interleaved before they are modulated on sub-carriers. IEEE 802.11p PHY takes exactly the same signal processing and specification from IEEE 802.11a except for the following changes:

1. Operating frequency bands for IEEE 802.11p are 5.9 GHz American ITS band. The 75 MHz are divided in seven 10 MHz channels and a safety margin of 5 MHz at the lower end of the band. The center channel is the control channel, on which all safety relevant messages are broadcasted. The remaining channels are used as service channels, where lower priority communication is conducted after negotiation on the control channel. As an option two adjacent service channels may be used as one 20 MHz channel. The European frequency regulation Conférence Européenne des Administrations des Postes et des Télécommunications (CEPT) is currently working on a similar frequency allocation.

2. In order to support larger communication range in vehicular environments, four classes of maximum allowable Effective Isotropic Radiated Power (EIRP) up to 44.8 dBm (30W) are defined in IEEE 802.11p. The largest value is reserved for use by approaching emergency vehicles. A typical value for safety relevant messages is 33 dBm.

3. To increase the tolerance for multi-path propagation effects of signal in vehicular environment, 10 MHz frequency bandwidth is used. As the result of reduced frequency bandwidth, all parameters in time domain for IEEE 802.11p is doubled comparing to the IEEE 802.11a PHY. On the one hand this reduces the effects of Doppler spread by having a smaller frequency bandwidth; on the other hand the doubled guard interval reduces inter-symbol interference caused by multi-path propagation.

4. As a result of the above the data rate of all PHY modes is halved.

B. MAC layer

Prioritized channel access in IEEE 802.11p uses the Enhanced distributed channel access (EDCA) mechanism originally provided by IEEE 802.11e. It includes listen before talk (LBT) and a random back-off. The back-off consists of a fixed and a random waiting time. The fixed waiting time is a number of “slots” given by the parameter AIFSN; a slot duration is 8µs. The random waiting time is also a number of slots, but the factor is drawn from a Contention Window (CW). The initial size of the CW is given by the factor CWmin. Each time, a transmission attempt fails, the CW size is doubled until reaching the size given by the parameter CWmax.

Prioritization is provided by using different channel access parameters for each packet priority. There are four available access categories originally defined for background (AC_BK), best effort (AC_BE), voice (AC_VO) and video (AC_VI) traffic. The parameter set used in IEEE 802.11p is shown in table 1:

<table>
<thead>
<tr>
<th>AC</th>
<th>CWmin</th>
<th>CWmax^a</th>
<th>AIFSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_BK</td>
<td>15</td>
<td>1023</td>
<td>9</td>
</tr>
<tr>
<td>AC_BE</td>
<td>7</td>
<td>15^2</td>
<td>6</td>
</tr>
<tr>
<td>AC_VO</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>AC_VI</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

In the high mobile environment the time interval, during which vehicles are in communication distance is very limited. To make optimal use of this short time period the communication overhead needs to be as low as possible. Thus no frame exchange on the wireless medium is needed before the actual data transmission. A Wireless Access in vehicular environments (WAVE) basic service set (BSS) is initiated by a provider station (STA) that transmits a WAVE service announcement frame (WSA) regularly. This management frame is similar to the beacon frame in ordinary IEEE 802.11 infrastructure BSSs but there are no restrictions on transmission intervals. There is no authentication and no association frame exchange needed to join a WBSS, it is an internal process of the joining STA. As the beacon frame is not used, the timing synchronization function (TSF) is not available. To achieve synchronization an external time reference like GPS has to be used.

WAVE STAs use the clear channel assessment (CCA) busy fraction to determine the channel occupancy as base for congestion control mechanisms. The CCA busy fraction is the percentage of time, the PHY sensed the channel not being idle during a time interval.

III. CHANNEL MODEL

Multi-path propagation is the most important characteristic of the vehicular communication channel. The radio wave reaches the receiver via two or more paths. The effects are constructive or destructive interference and phase shifting of the signal. The fading of the channel can not be described by large scale fading alone – significant small scale fading occurs within distances of meters.

An approach to model multi-path propagation very detailed is ray-tracing, where each possible propagation path (up to a maximum number of reflections) is calculated. Unfortunately the calculation is very time consuming and needs to be repeated with every movement of transmitter, receiver or reflector. The large number of calculations make ray-tracing unusable for stochastic simulation.

A compromise between detail and calculation efficiency is to calculate two propagation paths, the direct path and one reflected path like shown in figure 1.
Tables and figures have been added to the text to illustrate various aspects of the research, including channel modeling, mobility scenarios, and simulation results. These visual aids help in understanding the methodologies and results presented in the paper. The text also includes a detailed description of the channel modeling and error model used for the simulation, as well as the mobility model and scenario setup for the evaluation.

The calculation is conducted for every combination of transmitter and receiver. A phase shift is applied to the reflected propagation path, depending on the material of the reflector. As the road is the main reflector in the vehicular environment, the reflection coefficient for asphalt is chosen. Beside the distance between transmitter and receiver, the wavelength, the reflection coefficient and the antenna height, the path-loss exponent “Gamma” is a parameter for the path-loss calculation. A Gamma value of 2.0 represents free space propagation, a value of 3.5 is a relatively lossy environment mainly found indoor. Based on the work in [1] the path loss exponent 2.4 for the scenario evaluated in this paper is selected.

A detailed description on the channel modeling and error model used for the simulation can be found in [2].

IV. MOBILITY MODEL

The mobility model emulates a typical highway section. The scenario is made up by a number of lanes for both directions with a middle separator of two lanes width. Each vehicle has a preferred speed, depending on its type. The preferred speed is not necessarily the actual speed – each vehicle maintains a speed dependant safety distance to its predecessor. While the safety distance requirement is met, the vehicle accelerates up to its preferred speed. If accelerating to, or driving at the preferred speed is not possible, a change to the overtaking lane is considered. When distance checks to the front and rear view of both lanes, the current and the target lane, are passed, a lane change is conducted. When no lane change is possible, the vehicle de-accelerates until the safety distance requirement is met again, or the vehicle halts.

Vehicles leave the scenario at the border (different for both directions) and new vehicles are inserted on the opposite side.

V. SCENARIO DESCRIPTION

The scenario chosen for the evaluation is the highway scenario. Four highway lanes, two for each direction, are divided by a middle separator. The scenario setup is shown in figure 2. The length of the highway is 5km with up to 40 vehicles. A mixture of different types of vehicles with a preferred speed between 60km/h and 180km/h are simulated.

VI. SIMULATION RESULTS

Each vehicle in the scenario transmits a so called “Hello-message” regularly. The “Hello-message” is a 300 byte frame containing the transmitters MAC_ID timestamp and position information derived from the onboard GPS. It is transmitted ten times a second with the most robust PHY mode BPSK1/2 and a transmission power of 33dBm (2Watt). To collect information about the neighboring vehicles each car evaluates all received “Hello-messages”. The information contained in the “Hello-messages” is collected in the neighborhood table. Table 1 shows exemplary the contents of the neighborhood table kept in each receiver: The transmitters MAC_ID, its GPS position, the table duration and the silent duration. The silent
duration is the difference between the actual time and the timestamp of the last received “Hello-message”. Each time a “Hello-message” is received from a MAC_ID that is already included in the neighborhood table, the position and silent duration entries are updated. When the silent duration is larger than a preset threshold the tabular entry is considered to be outdated and is removed from the tabular. The threshold for this simulation is set to 200ms. As this is twice the time of the “Hello-message” repetition interval, a single frame loss will not lead to the removal from the neighborhood list. On the one hand this setting considers single frame collisions, when judging the neighborhood, on the other hand it removes vehicles from the neighborhood list as fast as possible, to allow for the evaluation of the upper boundary of the potential communication duration. The potential communication duration is the period of time, a vehicle is listed in the neighborhood table. This value is stored in the column “Table duration”.

<table>
<thead>
<tr>
<th>MAC_ID</th>
<th>Silent duration</th>
<th>Table duration</th>
<th>Relative x-Position</th>
<th>Relative y-Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>150ms</td>
<td>5s</td>
<td>-150m</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>74ms</td>
<td>2s</td>
<td>350m</td>
<td>5</td>
</tr>
<tr>
<td>38</td>
<td>25ms</td>
<td>1s</td>
<td>75m</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1 Neighborhood table

To evaluate the number of neighbor vehicles the number of entries in all neighborhood tables is recorded. The result of this evaluation is shown in figure 3. The figure shows the probability for having the number of n neighboring vehicles in communication range. The simulation results show that the average number of potential communication neighbors in this scenario is approximately four.

![Figure 3 Distribution of potential communication neighbor numbers](image)

In addition the duration, a vehicle is listed in the neighborhood table is analyzed. This is the potential communication duration of the vehicle with its peer. Figure 4 shows the complementary cumulative distribution function (CCDF) of the potential communication duration. In 50% of all occurrences, the maximum potential communication duration is approximately 1s; in 90% of the occurrences the upper boundary for the communication time is 5s.

![Figure 3 Probability for potential communication duration](image)

VII. CONCLUSION

In this paper, we evaluated the number of potential communication partners and the maximum communication duration for a vehicular ad-hoc network using IEEE 802.11p transceivers in a highway scenario. Both distributions will be used in further studies as input parameters for the planning of a multi-hop communication route that enables efficient warning message forwarding in the highway scenario.

REFERENCES

